Shri Shankaracharya Institute of Professional Management \& Technology

Session- July-Dec,2023
Sem- $3^{\text {rd }}$
Class Test - I

Time Allowed: 2 hrs. DEPARTMENT OF MECHANICAL ENGINEERING

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY
DEPARTMENT OF MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

Class Test: I	Session: July-December, 2023	Month: November, 2023
Semester: 3rd	Subject: Engineering Mechanics	
Code: B000313(037)	Time Allowed: 2 Hours	Max Marks: 40

Note: - Part A of Questions 1 and 2 is compulsory, from other parts B, C and D of Questions 1 and 2, attempt any two parts.
Ignore the columns of Level of Bloom's taxonomy and CO.

Q. No	Questions	Marks	Levels of Bloom's taxonomy	CO

Question - 1

$1 . A$	Choose Correct answer - (a) Friction is affected by \qquad i. Wind ii. The angle of the object iii. Position of the object iv. Options b and c (b) Formula to find the frictional force is . \qquad i. $F=\mu+N$ ii. $\quad F=\mu-N$ iii. $F=\mu N$ iv. $F=\mu / N$	4	Understand	2
1.3	A smooth cylinder of radius 10 cm resting on a horizontal surface supports a bar $A B$ of length 30 cm which is hinged at A. The weight of the bars is 50 N . The cylinder is kept from rolling away by a string $A O$ of length 20 cm , Assuming all surfaces to be frictionless, find the tension in the string.	8	Apply	1

An electric light fixture weighing 50 N hangs from point C by two strings $A C$ and $B C$ as shown in Fig. The string $A C$ is inclined at 60° to the horizontal and string $B C$ is 45° to the vertical. determine the forces in the strings $A C$ and $B C$.
2.B

DEPARTMENT OF MECHANICAL ENGINEERING

Class Test-I	Session - July to December 2023	Month- November
Semester -3 ${ }^{\text {rd }}$	Subject-Material Science	
Code-B037315(037)	Time Allowed: 2hours	Max Marks:40

Note: - 1. Students are required to focus on question and marks columns only.
2. In units I and II, Question A is compulsory and attempt any two from B, C \& D.

Q.	Questions	Marks	Levels of Bloom's taxonomy	CO

Part-A

1.A	Explain and write the difference between crystalline and non-crystalline solids.	$\mathbf{4}$	Remember	CO1
1.B	Write short notes on following: a) Face-centered cubic crystal structure b) Body-centered cubic crystal structure	$\mathbf{8}$	Understand	CO1
1.C	Write short notes on following: a) Simple cubic crystal structure b) Hexagonal close-packed crystal structure	$\mathbf{8}$	Understand	CO1
	Draw a [110] [100], [110], [111], and [1̄1 1] direction within a cubic unit cell. Also construct a(101), (011), (111), (0̄̄1), and (0̄̄12) plane within a cubic unit cell.	$\mathbf{8}$	Apply	CO1

Part-B						
2.A	Explain a crystal structure, a crystal system, unit cell and space lattice.	$\mathbf{4}$	Remember	CO1		
2.B	Explain in detail types of point defects.	$\mathbf{8}$	Remember	CO1		
2.C	Explain in detail types of line defects.	$\mathbf{8}$	Remember	CO1		
2.D	Explain stress-strain diagram with neat sketch.	$\mathbf{8}$	Understand	$\mathrm{CO2}$		

DEPARTMENT OF MECHANICAL ENGINEERING

Class Test - I	Session- July-December, 2023	Month- November, 2023
Semester 3 ${ }^{\text {rd }}$	Subject- Engineering Thermodynamics	
Code - B000314(037)	Time Allowed: 2 Hours	Max Marks: 40

Note: - Part $A(M C Q)$ of questions 1 and 2 is compulsory, from other parts B, C and D of questions 1 and 2, attempt any two parts.
Ignore the columns of Level of Bloom's taxonomy and CO.

1. A definite area or space where some thermodynamic process takes place is known as
(a) thermodynamic system (b) thermodynamic cycle
(c) Thermodynamic process (d) thermodynamic law.
1.A 2. As differentials, heat and work would be described mathematically as
(a) inexact
(b) exact
(c) discontinuity
(d) point function

A cylinder contains 1 kg of a certain fluid at an initial pressure of 20 bar . The fluid is allowed to expand reversibly behind a piston according to a law $\mathrm{pz}^{2}=$ constant until the volume is doubled. The fluid is then cooled reversibly at constant pressure until the piston regains its original position; heat is then supplied reversibly with
1.B the piston firmly locked in Position until the pressure rises to the original value of 20 bar. Calculate the net work done by the Fluid, for an initial volume of $0.05 \mathrm{m3}$.

Question - 2

	1. The processes or systems that do not involve heat are called - (a) isothermal processes (b) equilibrium processes			
(c) thermal processes (d) steady processes (e) Adiabatic processes.	$\mathbf{4}$	\mathbf{R}	$\mathbf{2}$	

1	2. Internal energy of a perfect gas depends on - (a) temperature, specific heats and pressure (b) temperature, specific heats and enthalpy (c) Temperature, specific heats and entropy (d) temperature only.			
2.B	Show that the relation for a heat transfer during process 1-2 in polytrophic process is -$Q_{1-2}=\frac{\gamma-n}{\gamma-1} \times$ Polytropic Work Done	8	U	1
2.C	Derive Steady Flow Energy Equation (SFEE).	8	A	1
4	A cylinder contains $0.45 \mathrm{~m}^{3}$ of a gas at $1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and $80^{\circ} \mathrm{C}$. The gas is compressed to a volume of $0.13 \mathrm{m3}$, the final pressure being 5 $\times 10^{5} \mathrm{~N} / \mathrm{m} 2$. Determine: (i) The mass of gas; (ii) The value of index ' n ' for compression; (iii) The increase in internal energy of the gas; (iv) The heat received or rejected by the gas during compression. Take $\gamma \quad \gamma=1.4, R=294.2 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$.	8	A	1

